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EQUATIONS OF THE PROBLEM OF DETSRMINING THE.LCCATION OF A MOVING

OBJECT 3Y SGYROSCOPES AND ACCELERCMETERS

A. Yu. Ishlinskiy (Mcsccw)

Summary

Th2 problam of the so-called autonomous, i.2., without using
axternal refarences, determination of the location of a moving object
is of great practical significance. Until racently, this problem had
virtually no chances fcr practical resolution because of the lack of
precision of th2 ssnsors availatlses to the engineer for this fpurpose,
namely - newtonometers!, or accelerometars, gyroscopes, and

integrators.

Pootnote: !We are proposiung taat the instruaents previously known in

tachnology as accelarometars, or acceleration meters, subsequently be
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called newtonometers, since they measure the combined action of both
the forces of inertia c¢f translaticnal motion and the forcas of
gravity on their sansor., It is the projection of the resultant
combination of these fcrces on a certain direction bound to the
instrumesrt, waich we will subsequently call the axis of sensitivity

of the newtonometer, which is measured.

de will point out tnat the abcve forces of inertia of
translational motion shcula be determined, of course, relative to a :
cocrdinate system which 1s straictly bound to the instrument itself. i
Coriolis forces of inertia usually do not affect the instrument

reading. End footnote

However, recently the creation of nev elements [1) has already made
it possible to solve this prcolem with satisfactory precision, as

long as the duration of mzovement of the cbject is short.

This report considers the theory of one possible version of the

problea of the autonomocus determiaation of the location of a wmoving

object.

The important protles of estisating tha precisionm of tha

deteraination of locatica, whica is affscted by the presence of the
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so-called instrument errcrs ot the newtonomaters, gyroscopes and
other components of the systea, is beyond the scope of this report
and may becom2 the object of special studies, Therefore, in the
future wve will assume that the above components operate without
arror3. Accordingly, *the electrcmechanical system which solves the
problam will be considered with the assumption that all of its
parametars precisely ccrraspond to their theoretical values, and that
ther2 are no technological errors (2.9., lack of precision of
assembly and free strokes ia transaissions). Purthermores, the initial

conditions of small oscillaticas of this system can be arbitrary.

1. Pirst we will giva thae sclution c¢f the known problam of
autonomous determinaticn durinj tae movement c¢f an object over an arc
cf the great circle of a cartain nonrotational sphare 3, whosa center
coincides with the centar of tna kEarth (Fig. 1) . In the siaplest
case, this corresponds t¢ movement at a constant altitude above the
aguator. Hera the datermsination of the location of the object
relative to the Barth itself i1s reduced to simply tiaming the

sovenent.
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?ig. 1. Pig. 2.

We will bind two systeas of coordinates xy and &*p* having the
same origin with a certaia Jetesimined point of a moving object (Fig.
1) . Hanceforth, we will cail this point the center of the object. The
x-axis of coordinate systema xy is airected alcng the velocity vector
of the object v. Accordangly, tne y-axis is the continuation of the
Barth's radius passing through the centar of the moving object. The
direction of the axes cf coordirate systenm gxm* is fixed (relative to

stationary stars or, analogousiy, relative to sphere S).

Suppose that the povements or both coordinate systeas coincide
at thae initial point in tima. Suvsaquantly, cccrdinate system xy will

be turned relative to rrcjrassively amaoving systenm E*n* by a certain
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angle ¢ which varies throuygh :cise. This angle is relatad to the
distance s = s(t) covered by the center of the objsct from the

initial point by the relationshig

?=x (1.1)

Hare R is the radius of tae arc of the grzat circle (the Barth's

radius) over which the center of ta= object acves.

We will place a certain platferm 1 stabilized by gyroscopes on
the onject (Fig. 2). In tae siaglest case, this platfora is oriented
by spacial servo systams so taac it is alvays perpendicular to the
vector of the intrinsic kinestic ascment of a certaian gyroscope (Fig.
2) « The bearings of the axie of tna outer ring of Cardan joints for
the suspension of this yyroscope can be attached to a stabilizing

platforn,

Let the intrinsic xinatic momaent of tha gyroscope H lie in the
plana E*nf. and a certaitn mcment 4 = M(%) be appliad to the axis of
the outer ring of its suspension., In this case, the precession of the
gyroscope axis occurs in the same plane E*nf. Following the

gyroscope, the stabilized platforam will rotate at an angular velocity
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whers ¢’is tha angla betwsen the axis of natural rotation of the

gyroscope and axis N*e

Furthermore, (fig. 2) e will place newvtcnomester 2 in the plane
of the stabilized platfora 1 and we will use 3 = a(t) to designate

its current rzading.

L2t the axis of sensitivity of the newtonometsr coincide with

the x-axis. Then i%s reading att) (Fig. 3) is a2xpra2ssed by the

formula

a(z)=(i—-3’-)5ina +g—:—:cosa (1.3)

FPige. 3.

Here j is the gravitatioanal force per unit aass, and the angle
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x=¢—¢ (1.4)

is the deflection of the stabilizea platforam from horizontal
direction (to be more preécise, perpendicular to the Earth's radius).
If the function a(t) obtained at tne output of the nevtonaometer is
integrated using special davices, as a result we can form the new

function

!
K gau)dt+-m (1.5)
0

wherz K and m are ca2rtain constanc parameta3rs. The necassary values

of these parameters will pe established later.

¥e can raproduce functicn (1.3) in the fora of aoment M (t)
acting on the gyroscope of the stanilized platform. Then, plugging

-

%1(t) into formula (1.2) and inteyrating, w2 will have

it
¢=%S§a(1)d:=+ T+ b (1.6)
a0

wheres ¢, is the angle of inclination of the stabilized platform to
the horizon at the initial point in time t = 0 (to be more precise,
to the x-axis, or to axis &%, whacn coincides with it at this

instant).

Considering foraulde (1.1) ana (1.4) and relationship (1.6), we

B VS —

[,
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vill have th2 equation

tt .
a=_;_i.—%“a(t)dt‘—-v—}’;it—% 1.7
00 :

which makes it possible to set up the differential equation for the
function a = a(t) and tne 1inictial ccnditions of this ejuation.
Actually, setting t = 0 in equatioa ('.7) aand noting that (0) = 0, we

will have

2(0) =—¢ . (1.8)

which, of course, also rciiows airaectly f£rom formula {l1.4).
Subsaquently, we will equate tane derivatives of the left and right

sides of equation (1.7). de ¥will octain

—_— O —— v -

a(t)dt — - (1.9)

dhenca it follows that tae initial value of the derivative of

function a(t) through time 1s z2xpressed by the formula

da0) w0 m _ ds(0) )
N =R~ H (r0 =) (1.10)

dere v({0) is the inicial valu? of the velocity of the center of

the object relative to ncanrotatiny Sphara S.

Finally, if we differeaciatsz both siles of aquation (1.7) once
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and consider formula (1.3), ¥2 will arrive at the ralationship

d? K /. 3 . .
7%+F<l—v7)sma = (%——g-cosa):%: : (1.11)

#ith a given function 5 = s(t), this ralationship can be
considar=d t> b2 th2 seccnd-order aiffsrential equation for the
function a = x(t), i.2,, for tane aagla of inclination of the
stabilized platforam to the aorizon. Thz2 initial conditions of this

di fferential equation are ueterained by equations (1.3) and (1.13).

2. Differential z2quation (1.11) has a partial integral

(2.1)

which is extr2maly impertaat for solving the problem of the

autonomous determinaticn of tae gosition of a moving object, as long

as the equation

K
R H

is satisfied, as it is nct hard to see, and the initial conditions

are such that
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BEquation (2.2) determines the value of parameter K. Together
with squa*ion (1.8), the first condition of (2.3) leads to the
requirement tha* there is ao initial deflection of the stabilizing

platform from the horizcm, i.2., tne equation
$o=0 (2.4

is satisfied.

According to the second coaaition of (2.3) and formula (1.10),

v2 will have

= (2.9)

This determines the value of parameter a in the device which

forms function (1.5).

Thus, whan conditions (2.4) and (2.5) are observed, as well as
equation (2.2), the stabilized platform will remain horizoantal (to be
more precise, it will te perpendicular to the Earth's radius) with

any law of the movement of the center of the object s = s(t).

However, if a = 0, a(t) = d2s/dt2 in accordance with formula
(1.3) and, consequently, with consideration of conditions (2.5) and

(2.2), function (1.5) will assume the fornm:
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t

A [ogj%':dr + v(0)]= Kv (1) (2.6)

Thus, in this case, with precision down to the constant factor
K, function (1,5) is the curr2ut values of the velocity of the object
v = v (%) relative to ncnrotatinyg sghere S, Therefore, if we now apply
function (1.5) to the second integrating device, with the sanme
assumptiors, at its output we will obtain the urknown distance s{(t)
covered by the centar ¢I tae ooject from th9 original position (also

with precision down to tha tactcr «).

3. In the same general case, <hen a £ 0, the valus

J 1

§ [K Sa(t)dt + m] dt (3.1) ‘
[}

generated by the above inteyrating devices differs from the product

Ks (t) « According to equation (1.,7) and condition (2.2), ve will have

§(t) — -H‘ {§ Ka(t)dt + m} dt = Ra(t) + R}, (3.2)

Thus, the valu2 of tae arror as in determining the distance by

the above method is
(3.3)

As = R[a(t) —a(0)]
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wvher2 a(t) is detarmined py difrarantial aquation (1.11) with inditial

conditions (1.8) and (1.1) and tne observation of equation (2.2).

Tha angl2 a{t) of the inclipation of the stabilized platform to
the x-axis can be considered to be extremely small. Therefore,
dropping the t2rms with tae saccad order of smallnass relativa to «a
frcm 2quation (1.11) and considsriag =2gquation (2.2), w2 will arrive

at the following homogeneous linear diffesrential equation:

'%"-f- —:T(/'——;;—)¢=O (3.4)

dith the known approximaticn we can assume that

l‘ —_— _v_};_ =g= const (35)

where g is the value of tae dcceleration of the force of gravity in
the ragion of movement cf tae object. In this case, tha solution to
equation (3.4) is in the Lorm or a geometric function:

a(t) =a(0)coswt + + 2O gin y (v=%) (3.6)

whose pariod

T=2eVR/g=844 min.
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is known in gyroscope tneory aS thad Schuler period.

Thus, in g2neral, according to formulae (3.3) and (3.4), the
arror in the autonomous detasrmination of th2 location of the object

by the abova method fluctuates.

4L, Wecan also suggest otner adtaods of deteramining the location of

an object which generally lead to the same results.

For example, suppose the platform is stabilizad ralative to
coordinate system E&*p* so that it remains parallel to the £*-axis.
This stabilization can ie ootained by free gyroscopes or by tracking
stars (astronavigation) ({2]). In tais case, the newtonometer should be
turnad relative to the platform oy the following angle

b
X "

ClrD o,

[ .
Sa(l)dl'+,'_$?_)l 14.1)
[]

for which its readings should be integrated tvice.

#ith the precise cbsarvation of caertain ejuations similar to the

prec2ding equation, we aava

S
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There are origiral devices wnich perform the double integration
immediately without breaking it down into two succassive operations ]

(Bovkov inteagrator) [3].

5. We will proc=224 to the consijeration of the problem of
ieteraining the locatica of an ccja3ct whose center moves randoaly
over the Farth's sphere., For solving this problem we vwill use a

platfora stabilized by gyroscopes, so that the angular velocities

M M M
we = s oy = w, = (5.1)

around the x- and y-axes iying an the plane of the platform and the
z-axis normal to it arcse pecause three momants M,;, M, and A, applied

to the axes of the gyroscope housiags.

Pijure 4 shows a possinla diagram for realizing this type of

stabilization. The plane of the platform P, which is connected with
the object by a three-dimensional cardan suspension (not shown in the
figur2), is continuously made to coincide with the plane
perpendicular to the intrinsic axis of the gyroscope 1 by servo

systams. The bearings c¢£f the axis of the outer ring of tais

a2 i
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gyroscope's cardan suspension are arranged on the stabilized platfora
so that the axis itself liss in tn: plane of the platform. When the
servo system operates perfactly, th?2 axis of the inner ring, i.e.,
the axis of the gyrosccpe aousinyg, also coincides with the plane of
the platform., Let M; and 4, be the moments appliad to the axis of the
outer ring of ‘he suspeasica aad tne axis of the housing,
respectively, designated oy x and y. The moments M; and ¥, cause the
precession of the gyroscope and, consequently, the rotation of the
platform around the x- and y-axes at angular velccities w, and uy.
The values of the latter ars detveramined by the first two foraulae in

(5. 1) &

The bearings of the axis of tne outer cardan ring of the
gyroscope 2 (Pij, 4) are connectad to “he platfora with the saame
intrinsic kinetic nmoment d as tne £irst. The axis of this outer ring

is perpendicular to the plane orf tane platform. A certain correcting

e et s et wp—————— s~




L e, ] T T

A e st <

DOC = 0925 PAGE 1o

moment is appliad ¢o this axis so that the natural rotation axis of
the gyroscope 1 is parallsl to the plan= of the platfora.
Purthermore, a special servo system continuously makes the above
x-axis, which should be considered to be rigidly bound to tiae

stabilized platform, ccincide with the natural rotation axis of the

gyrescope 2, The moment M; applied to the axis of the aousing of the
sacond gyroscop=: causas tae prscession of tae gyroscope anad,

consaquently, tha rotaticn of tae platform parallel to the z-axis at

— ]
angular velocity w,. The iattar is perp2ndicular to the plane of the

platform, and together wita tne x- and y-axes, forms ractangular J
coordinate system xyz, whica 1s rigidly bound to the platform. We J

will considar tha origin of tais system to be lccated in the center
of the sbject. The values of M3 aad w, are related by the third

formula of (5.1 .

Two newtonometers whose axes of sensitivity are directed along
the axes of coordinates x and y are located on the stabilized
platfora in the direct proximity or the origin of coordinate systenm
xyz. Let the center of the moving object move randomly over the
Earth's sphere, and the momants M, and M, be related to the readings

of tha corresponding newtonometers a, and a, by th2 formulae

¢
My=— Kga,dt— m,, M, Kga,dz +m, (5.2)
[ [ ]

for which special integrating devices amust be provided.
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We will explain what parameters K, my and a,, and also soment M;

must be in ord=r for the plane or the platform to remain horizontal.

Th3 projections of tae acceleration of the origin of coordinates
relativs *o nonrotating spaner2 3 cn the x-, y- and z-axes is

axprassed by tha formulae [4, 5]

d%

Wy = + mvvz bt w:vv
dv

wy = + WPz — W (5.3)
d%

W, = TR 4 gty — Wyl

.
~
~

vy and v, aré‘tgg projections of the velocity of the origin

of coordinates on the same axes relative to sphere S. In the case in

vher= V, v

question, v, = 0, and the rorca cf gravity has projections equal to
z3ro on the x- and y-axes. Tharasfore, the navtonometers directly
maasure accalerations w, and Yoo and according to formulae (5.1) and

(5.2), the following equaticns hold:

dv
(T + W )dl

==X
7]

|

H

vy

( z “":”v) de + 33 (5.4)

ﬁn

37 =
it 4

Since the platform musct remsaian horizontal and the z-axis

directed along the Eartn'’s rauius as the object amoves, in 2quations
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(5.4) we should [5] consider tanat

Vg = (an. Yy = — UxR (5-5)

Using these formulae, we will eliminata the values w, and oy

from squations (5.4). We will nave

t
KR (v, \
(e
[ ]
t
= KR R
"—TS( +“’x”=)d‘+7m1 (5.6)
]

Bquations (5.6) must 0s satisiiad during a random change in v,
and Vs i.e., they must be idsatities. dcwever, this is only possible

vith the following conditioas:

3 %“ =1, =0, m=AKn0), m=~K:0 (5.7) i
'h 3
* The £irst conditicn coincides with equation (2.2): the second,

! according to tha third formula of (5.1), leads to the requirement

My=0 (5.8) i

Pinally, the last two coanditions concern th2 agreement of the

initial velocity of the canter ot the moving cbject (relative to
sphere S), or to be more precise, its projection on tha x- and

y-axas, with parameters a; and m, of the integrating devices.
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6. According to fcraulae (5.1}, (5.2) and (5.8), as a result of
the work of the integratcrs, tae projections of the angular velocity
of tha stabilized platform w4, and wy ars now known time functions,
@w, = 0, and the 2z-axis 1s directed along the Earth's radius.
Theoretically, this makes i1t possiple to continuously J2termine th=2

locaticn of the obj=ct on tae Earta's spher2 and its coursa,

Actually, w=2 will ccasidser (Fig. 5) tha so-called geographic
triangla o, wvhose apex cowinciaas with th2 origin ¢of coordinate
systam xyz (i.e., with tha ceacer of the object); side & is directed
towvards the east, side')z - tovards the north and, f£inally, sides ¢ -
from tha Earth's radius upward. The projections of the angular
velocity u of this triangle r2iative to nonrotating sphers S on sides

& 7 and ¢ are expressed {6] by tae formulae

u VN VE Vg .
== —g Un=—p +Ucosg, u; = o~ tge + Using (6.9
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Norkh

¥
U

P — E(Fast]

Fig. S. Pij. 6.

Here U is the angular velocity of the Earth, # is the current
latituds of the location, and Vg and VN are the eastern and northern
coaponents of the v2locity of tae center of the object relative to

the 2Zarth, respactively, Opviously,

Vg=HRcos ?% ) Va = R—z"; (6.2)

wvher2 X\ is the current longitude.

In this case, side ¢ coiacidaes with tha z-axis. Therefore, the

projections wy, c.n.t and w, arse relaced to tha values U Un and ug by

the relationships

i
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Wz = Ug COS ) + Uy Sin Y

@y, = —ugsiny 4 Uncos Y, m,aug-i-%% (6.3)

vhers X is the angle betwaen taoe &€- and x-axes (Pijy. 6).

Considering formulae (o.1) and (6.2) and the fact that w, = 0,
and that wy=0w:() and w, =o>,,(t)‘ are unknown time functions, according to

r2lationships (5.3) we will arrivs at a system of three differential
aguations:
d 2 da .
——;:lcosx+KU+ W)cosqsxnx=m,(t)
de .
71—' siny + (U + %) COS P COS Y = Wy (1) (6.4)

'(U+ %)sin? + ‘;—f=0

for the thres unknown functions e#(t), A(%) and %L (t).

With known initial conditicrs #(0), A(0) and X(0), i.2., data on
the location of the object and 1ts orientation at the initial point
in time, equations (6.4) can pe integrated on a special compu¥er.

Here it is helpful to solve tnem first for the derivatives, i.e., to

represent them in the forn
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‘-1';% = — Wy (£) oSy + w, (1) sin X
ey w, (t)siny +w, (fcosy
ria + cos ¢

= fox (1) siny + wy (D) cosy) g o

and x(t),

(6.5)

Wa can also find the

coursa of the object, i.e., the angle 7 which its velocity vector

forms ra2lative to *the Farth's surface with the meridian of the

location

{Pig. 7). Accerding To foraula=

KA is determined by the equatioa

7.

Now

tgu:

Ucose—a,(t)siny—w,(t)cosy
w, (t)cos x —w,, (¢) sin x

prcceed to studying the small

(6.2) and (6.5),

novemants of the

the courssa
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stabilized platform witn the assumption that at the initial instant,
its plane was not in a pracissly horizontal position and conditions
(5.7) of tha selection of the value of parameters m, and m, have been
satisfied with a small error. Furtpnermore, we will considar that the
first two equations of (5.7) aave peen realized with conmplete

precision.

de will introduca tha Darvoux triangle x%9y©%29, whose sides x©
and y9® are *“ang=2nt to tae Earta's spher= [5, 7] and, consagquently,
1lso nonrotating sphere S. Side x© is directed along the velocity
vector v of the apax of tne triangie relative to sphera S. We will
call triangls x©9y©z% a nactura.i Darooux triangle, We will placa its
apex in the center of the movaing object, i.e., at “he origin of
coordinate system xyz, which 1s rigidly bound to the stabilized
platform, The projecticas oi tae aagular valocity «? of the natural
Darboux triangla on sides x9, y© aad z? ar2 reprasanted by the

foraulas

we’ =0, Wy = _IJR_ ’ Wy = @ (7.1)

At a given velocity v = v(t), functions @ = U(t) datermine [7)
the gaodesic curvature cf the trajectory of the apex of triangle

x%y%z?® on sphere S,
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In turn, the projections or tae acceleration of tae apex of the
triangla during its movement relative to nonrotating spher= S onto

sides x®, y® and z° are expressed oy the foraulae

or S G, TR b e

dv ~ v
wx- = 7;7 , wv. = mv, wl' == — T (7.2)

Henceforth, w2 will use tne table of ccsines 0f the angles
between the axes of cocrdinats system xyz and the sides of the
triangle x°y9z°, I+ is: 3

o

z° y° z
& @ YCOS P —sinysinasinf sinycos @ 4 cosysinasinf —cosasin @
v — 8in vy COB 2 CO8 Y COg & 8ip a
z ooayein @+ einysinacosf sin yoln § — 008 v 81D a CO8 B co8 a CO8 §
(1.3)
B ~
1
Here the angles a, g, y describ2 the orientation 0f coordinate

i o

systam xyz ra2lative to triangle x9y%z° (Fig. 8). The aagle y is the
angla of rotation of the auxiliary coordinate systam x'y'z' relative
to the triangle. The z'-axis of this system coincides with side 2z°.
The coordinat2 syst2m is rotated ccunterclockwise (viewad froam the
positive part of the z'-axais) untval the x'-axis coincides with plane
zx. Similarly, angle « is determinad by the relative position of
coordinate syst2m x'y*2*' ana ancther auxiliary system x"y"z", the x'-
and x"-axes of which ccaincide, Tne z"-axis of tha lattsr coordinate

systam also coincidas wita plane zx, as a rasult of which its axis y»
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turns out to be directed aloagy tne y-axis,

Fhan a > 0, coordinate system x"y"z" is turned counterclockwisse
ralative to system x'y'z*, Af we observe its rotation from the

positive part of the x'-axis (or, analogously, the x"-axis).

Finally, anyla B is the angle betwaen x- and x'-axes of
coordinate systams xyz and 2z"y"z", The sign o0f angle P is determined

analogously to the signs of angles y and a.

The angular velocity w of coordinate systes xyz relative to
nonrotating sphere S is the gecmetric suam of the angular velocity w°
of tha natural Darboux triaagie reiative to the same sphere and the

three relative angular velocitias dy/dt, da/dt and d8/4t. The latter

are the angular velocities of coordinat2 system x'y’z! relative to
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triangl=2 x%9y%z9, of systea x"y"z" relative to x'y'z*, and, finally,

of coordinate syst2m xyz, i.e., the stabilized platform, relative to

system x"y"z",

The relative anqgular valocity dys/dt is diracted along side z°,
the angular velocity dasdt - alcoy the x*-axis, and angular velocity
d8/dt - along the y-axis. The x'-axis coincides with side x° with an
angle y = 0 which, accordiny to Taole (7.3), makes it possidle to
find the cosines of the angles formed by the direction of the
ralativa angular velocity day/dt to the axis of coordinate systeas xyz
(Fig. 8). Considering all of the acove, we obtain the following
expressions for the prcjections «,, ug_and w, of tne angular velocity
of the stabilized platform onto the axes of coordinate systeam xyz,
vhich is rigidly bound tc it:

wy = —);-(sinycosﬁ + cosysin a sin p) +(3 + :—I)(— cos a 8in f) + :—‘acosﬁ

v ~ dy\ .. dpg

Wy = 5 cosycosa 4 (w 4 =) sina 4 -~ 7.4)
R Y ( dt) di - .’d (

w, = -;;— (sinysin § — cosysin x cos B) + (o) +?—7‘--) cosacosB 4 di‘sinp

Using table (7.3) and formulae (7.2), we then arrive at the

exprassions for the projections w,, vy and v, of the acceleration of

z

the origin of coordinate system xyz, namely
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wy = :—:’ (cosycusB — sinysinasin3) + wv (siny cos P + cosysin a sin B) —

— %(— cos a sin )
uy = % (— sinycosa) + v cosycosa — % sin « (7.9)
wy = "% (cos ysin B + sin ysin a cos f) 4 v (sin ysin 3 — cosysin « cos §) —

o
~— g cosacosf

In this casa, unlike 3o, tne projections of the force of gravity
on the x- and y-ax=ss are alreaay aornzero. Therefore, the
nawtonomasters located cn the x- aaa y-axes will measure ths sum of
correspcnding to tha projections (with the

accalerations w, and v

* +

opposite signs) of the acceleration of the force of gravity § oamto

these same axes. This acceleration is directed along side z? toward
the cantar of the Earth. Now, coasidering formulae (7.5) and (7.3},
ve will find that the readangs a, and a*,of the corresponding

nevtonometers should be expressed oy the foraulae

a; = 5‘1 (cosycos B — sinysin asin B) + v (sin ycos B 4 cosysinasin ) +
+ (j— -';—;) (— cos « sin B) (7.6)

a, = ;% (— sinycosa) 4 @vcosycosa + (j-— %—)sina

Now we will form tn€ mowments M, and M, according to foraulae

(5.2), vhile M3, like before, will be considered to be equal to zero.

According to relationships (5.1), we will have

b e e
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L
oe=—glod—3, o=Flads2 o=0 @7

As follows from fcrmuiae {(7.4) and (7.6), these equations can be

considered to be tha systam of eguations for determining the time

functions a(t), B(%) and y(t) wita the given functions v(t) and &(t). f

Diffasrantiating tte fairst two ejuations of (7.7) with raspect to
time, we will arrive at a systes of differential eguations for the

same unknown functions:

d d\

Considering angles a and p an formula=z (7.4 and (7.6) to be
small, and disregarding tae second-order terams relative to these

variablas, we will reduce tae expressions £Or  ws oy, w;,0ax and ay to

. c . d d
Wy = %smy—km-f- mz)ﬁ-{-ig
4

«w=%°°ﬁ¥+(ﬁ+§%)=+5‘f

w, = #(psiny——acoay) + a4 :-‘1 (7.9)
R 3
a,=£1cosy+6-vsiny—- (/ —-%)ﬁ

dv . - ,
Gy =— 3-:1 siny + @ cosy + (/ —ﬁ—)a

Sinca w, = 0, acccrdiny to the third formula of (7.9),
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(+dl‘=n-g-(acos'{—-§siny) (7.10)

Whence it follows thatr tas tarms
., d ., d .
(ul+dTY)C, (Id+&i—{)p (711)

contained in the first two foraulae of (7.9) are of the second order
of smallness relative tg veriapnles « and 8 and, consequently, they
can b2 1ropped. Thus, wita pracision down ¢to the second order of

snallaess, we will have

Wy = siny + 5, wy = eosy + 5 (7.12)

Now, if w2 use relationsaip (7.10) to 2liminate function @(t)
from the fourth and fifth formulae of (7.9), after siample
transformations we will ootain the following expressions for the
values of a, and ay:

. . v‘
o, = fr(v cosy) + & (acosy —psiny)siny — (l - T)p (713,

Gy = — 5— (vsiny) +'—l;(acosy—-ﬁsinY)cosy-{-(i—-;;)a

Finally, substituting tna values o0f «,,wy,a; and a, in the first

tvo aquations of (7.8) according tc formulaz (7.12) and (7.13) and

considering equation (2.2), aftar aobvious simplifications, we will




DQC = 0925 BAGE 30

arrive at two second-order diiterantial equations:

dta , v . 3
s +[_I.¢.—. ﬁ(asmy-f- Bcosy)siny

@
dit

Re A (7.14)
+ h{_ﬁ = ];T (xsiny + Pcosy)cosy

Together with relationsahip (7.10), they form a systea of

diffarantial equations fcr tns functions a(t), B(t) and y(t).

Considaring th2 s®sallazss of the values c¢f£ a and B, angle vy in

equations (7. 14) can be replaced py the integral

v=—{odt + v (7.15)
0
vhere y, is the value ¢f tne angle y betveen the x-axis and side x°
(i.e., the wvelocity vectcr of tne center of the object) at the
initial point in time, As it 1s easy to confirm from equations (7.10)
and (7.14), the errors which arise during this substitution are of

the second order of smallpnesse.

Thus, the study of small oscillations of a stabilized platfora
is rsduced to the integration of two linear differential equations

vith variable coefficients depending on timel,
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Pootnote: 'It is curious to note tae complete idantity of eguations

{7.14) of small oscillations or the stabilized platfora in guestion

a c2rtain physical

vith the equations of smail osciliations of

sphere S. The equilibrium

pendulum with a reference poiat moving over

conditions of this pendulum relative to the natural Darboux triangle

are given in r=2port [5). 8nd foctaote

8., Setting aside the inteyration of the differential =quations

{(7.14) of small oscillations of tas platform during random wmcvement

of th2 centar of the ctjeéct cvar tne Barth's sphere, we will limit

ourselves to the case W = 0 and v = const, which corresponds to

sovement at a constant velocity over an arc of the great circle of

In tals case, movapment relative to the Earth

nonrotating sphere S,

vill occur with a variable relatavs velocity over a coaplex

trajectory. Setting @ = 0 1n formuia (7.15), we conclude that the

angle y in system of differentidal equations (7.14) should be

considered to be constant. As a result, systea (7.14) is broken down

into two independent egquations:

a‘%(asiuy-’- Pcosy)+(%—-%)(asiuy+ Beosy) =0

(8.4)

a‘%(acosy—psiny) + ,’;-(acosy—ﬂsinﬂ =0

The first of them ccrresjpoads to the angular oscillations of the
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platform around the side y? of tae natural Darboux triangle, and the

sacond - around sida x99, respectivaly. As we already mentioned above,

side x° is directed alcng velocity vector v. The frequencies of these
oscillations are close tcgether, as long as the value of the velocity
v is not too ygr2at (e.G., 4 value less than th2 velocity of points on I
the Earth's equator during its diurnal rotation). This corresponds to |
a period of time approxigately equal to 84 mia, (i.e., the Schuler

period),

9. In the presence of small oscillations of a stabilized

olatforn, i.e., wh2n anglias a and g are nonzero, ralationships (5.5)

Eaia a0

will be realizesd with a certain erzor. FPurthermore, the initial
3 aquations (5.6) for this methoa of autonomous determination of

location cannot be turned into grecise identities because of the

ey

presence of projections cf tha acceleration of gravity j in the

newtonometer readings a, and aye One would expect the errors in
deter mining th2 latitude and longitude of the location of the aoving
object and its course, which occur because of the above
circunstances, to fluctuate. Howevar, additional research is
necessary for the precise determination of the nature of the change

in these errors through time.
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10. Above it was assuaed that the center of the object moves
over tke sphere S, on tne basis of which it was assumed that v, = 0
informulae (5.3). Now we will shcw how to 2liminata this restrictive

condition.

Suppose that a plarviora stapilized by gyroscopes moves so that
its plane remains perpendicular to the Earth*s radius. In this case,
it is necessary to satisfy the same =2quations (S5S.5), where vy and Vo
like before, are the projections of the velocity v of the center of
the zardan suspension or taa platicrm onto the x- and y-axes relative
to tha spher2 S, ani “s aad “y are the projections of its angular

velocity w onto the same axas, Thus, we should have

(10.1)

¥

b

|
|
F

4
ol

4

Unlike equations (5.3), nera R = R(t) is the variable value of
the distance betwveen the caentar of the cardan suspansion of the

platform and the center ¢f spaere 3.

The angular valocities w, and wy are created by applying moments
M, and M, to the platfcrm accordiny to the first two foraulae of
(5.1 . Consequently, mcmeats 4, and M, should be formed according to

the aguations

B soils
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M, = _% - M, = %v, (10.2)

We will place two nevtonom3ters, whose axes of sensitivity are
directed along the x- and y-axss, <hich lie in the plane of the
platform, in direct proximity to tae center of the cardan suspension.
Their readings a,(t) and a*(t) wi1lli not contain the projections of
the acceleration of gravity j onto the x- and y-axss, since by
assumption, as it moves ta2 stapiliza2d platform remains perpendicular

to tha straight line ccnnectiny the center of the cardan suspension

and the cent2r of sphere 5. Based on this, we can set

dy
o (‘) =w, = ‘_f_}; + WV — Wiy, ay (1L= wy = _d—l! -+ WU — WV, (103)

Here, unlike the cass in 36, v, is already nonzero and is
expressad as

dR
. (10.4)

Like befora, if we consider Mj; = 0, than according to the third
formula of (5.1), ve again obtain w, = 0, i.e., the platfora wvwill not
have its angular velocity component w along the z-axis directed along

the radius of sphere S. Consideriny this, as well as formulae (10.1)
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and (10.4), according tc¢ 3juaticas (10.3), vwe arrive at the

relationships

dv, v an dv v, dR

Thesa relationships can oe considered *o be differeantial
aquations which make it possipla to plot functions v, (t) angd v*(t)
with known func*tions a,(t) and awit), as well as B = R(t). Th2 values
of the former functions arz necessary for foraing aomeats M4, and M,,

vhich coantrol tha orientation cf tae platfora.

The solution of equations (10.5) is reduced to the quadratic

equations

v = ;— [< Ra (t)dt + R(0)v, (0)]. 5, = % [S'Ra,, (1) dt+R(0)vy (0)](10.6)

0 o

Thus, according tc formulae (10.2), noments N, and M, should be

formaad froam the nevtoncmeter rsadiangs ax(t) and amit) as follows:

[}
H
My = —-LICR (1) 8y (1) dt + R (0) 2 (0)
' R‘[§ ] (10.7)

M,= %[S'.R(t) az(t) dt + R(0)v:(0))
[

Por this purpose, aevices which aultiply and divide the current

valuas aust ba providad, as wvall as integrators.

| ool o s i U ABOREE
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Tha variable value ¢ & = R(t) in equations (10.7) is considered
ba known in advance, Howevar, tne gresence of a third nevwtonometer
vhosa axis of sansitivity is parallel to th2 z-axis (the Zarth's
radius) theoretically makes it possible to Jetermine this function
independent of any other auxiliary devices, Actually, the reading of

this newtonometer is determined by the formula

dy

: 10.8
o, = w;— j= g~ + @y — ¥ — ) (10.8)

Here
.. R | (10.9)
1=]o i
the acceleration of gravity, wanica decreases with the increase in the

distanc2 from the Barth's canter, Jg is its value on the Earth's

surface, whos2 radius is dasijnated as Ry

Using formulae (10.1), (10.4) and (1.9), we obtain the

following for function R (t)

[ A Y  § .
.%;;-_v, ';"v _%’= a: (1) (10.10)

The devica which inteyrates tnis differential equation must be

connected to on=2 systea witn inteyrators wvhich reproduce moments N,

. . P i bty gl 2 - g A e e
. . . i e o y o % s b g .
e Aol S s g 27 N Rl O R NI o A e i .
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and M,. According *o formulae (10.2), these mcments differ fronm

functions v%(t) and vy (t) only an the constant factor. Actually,

functions vx(t) and v*(t) dre in eguation (10.10);: in turn, function

R(t) is used in foraulae (1V.o).

Problems of th2 stapility oi this computational systen raquire
special examination., dithout uiscussing the study of small
oscillations of the statilizinyg platform, either, we will point out
that the subsaquen:t solution or tae problem of the location of a
moving object is re=duced to tae integration of the same system of
differential equations (6.5), wa2Ce wy (%) and ubﬂt) ar= considered to
be known functions of tiss on thne pasis of formulae (10.1), (10.2)

and (10.6) .
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